
4/8/24

1

DCS 1500:
Computational Methods

Mohammad T. Irfan

Email: mirfan@bowdoin.edu

Office Hours:
Wed 3-5:30pm, Fri 10am-12pm

http://mtirfan.com/DCS-1500

1

About myself

3

mailto:mirfan@bowdoin.edu
http://mtirfan.com/DCS-1500

4/8/24

2

4

Sphere 1: Security &
Armed Forces

5

4/8/24

3

Sphere 2: Economics &
Finance

6

Best Paper Award
AAMAS 2018

8

4/8/24

4

NSF Core
Research

Grant

9

Contagion Course
Spring 2020

10

4/8/24

5

He was very satisfied with his teaching career.
He said something that reminded me of my own students.
He said, “The students of Collegiate School wanted to learn beyond
textbooks. And if the students are not interested in learning, then there’s
no joy in teaching.”
What a beautiful thing to say! That’s why I’m itching to get into a class
(even during my sabbatical).

11

Advice to faculty

"Your students want you. Great
content and a well-organized class
help. But mostly they want you …

No amount of sophisticated bells
and whistles can replace an
authentic, present and engaged
instructor."

(www.insidehighered.com)

13

http://www.insidehighered.com/

4/8/24

6

I teach humans
intellectually challenging

courses with
care, compassion, and

emotional engagement.

14

You

15

4/8/24

7

Lunch?
Most days work for me

(MTW after 1:05 and RF ~12pm)

16

Media

1. Course website for syllabus, slides, etc.
http://mtirfan.com/DCS-1500

2. Canvas for projects and other deliverables,
except Python labs

3. Coderunner for Python labs

17

http://mtirfan.com/DCS-1500

4/8/24

8

Python programming
environment
Download and install
• Anaconda distribution
• VS Code

Small programs: Python shell (pre-installed)

19

Student hours

• Emily Simons: Tue & Wed 7-9pm in Mills 105
• Narmer Bazile: Thu 7-9pm in Mills 105

• My office hours: Wed 3-5:30pm in Mills 209
 Fri 10am-12pm in Mills 209

23

4/8/24

9

Expressions
• Arithmetic (replace x and y by two numbers)
• x + y
• x – y
• x * y
• x/y

• Special // operator means integer division. Example: 2//3 is
0 and 4//3 is 1.

• x % y: remainder of the division x/y
• x ** y: x raised to the power y
• comparison: == (equal), != (not eq), >, >=, <, <=

• Precedence: usual
• Logical expressions: hold for now

24

Data/objects: Nouns

• Scalar – 4 types
• int (example: -10000, 200, 53)
• float (example: -37.59, 28.0)
• bool (example: True, False)
• None

• Non-scalar
• String (example: “hello”, “57”)
• List (example: [2, 3, 5, 7, 11, “primes”])
• And many other ... (You can define and create your

own non-scalar objects)

25

4/8/24

10

string (or text)

• String concatenation

 >>> 'Alice' + ' ' + 'Bob’
 'Alice Bob’

• String replication
 >>> 'Alice’ * 3
 'AliceAliceAlice

"String" must be in
quotations (single/double)

26

Statements

• print(‘Welcome to Python’)
• print(“What’s your name?”)
• print (2 + 3 * 4)

• x = 5 * 10

• print(x)

Assignment statement:
Assign the value of 5 * 10 to
"variable" x

27

4/8/24

11

Variable

Simplistic definition: Names storage space

name = "Alice"

age = 10

Assignment statements are usually the only way to change
the value of a variable, also the #1 source of “bugs”

28

Naming a variable

• Name must start with a letter (upper or lower
case) or _ and may contain digits after the first
symbol
• Use sensible names
• Cannot use reserved words (e.g., if, for, while)

29

4/8/24

12

Check in

• How does Python categorize all possible data?

• Does the following line change the value of age?
>>> age + 10

• How can we change the value of a variable?

30

Syntactic error

• 1 + 2 *
• "5" + 10

• Can you suggest some more syntactic errors?

31

4/8/24

13

Comments

• # Single line comment

•
'''
Multiple lines
of
comments

 '''

This is basically a multiline
"string" with no effect.

32

Computer programs

A mix of three types of statements
• Sequential
• Conditional (if)
• Iterative (loop)

33

4/8/24

14

First program
This program asks for name and age

print('What is your name?') # ask for the name
my_name = input()
print('It is good to meet you, ' + my_name)
print('The length of your name is:')
print(len(my_name))

print('What is your age?') # ask for the age
my_age = input()
print("You’ll be " + (my_age+1) + " next year.")

What error(s) do you see?
How to correct?

34

Some built-in functions

• print(…)
• input() #returns an input string
• len(“some string”) #returns number of characters
• int(“5”) #returns number 5
• str(5) #returns “5” (a string)

35

4/8/24

15

Brief Intro: Function
Reading: Ch 3
(up to “Return Values and Return Statements”)

36

Flow Control
Reading: Chapter 2 of Automate the Boring Stuff

38

4/8/24

16

Flow Chart

39

https://uwaterloo.ca/ist-project-management-office/tools-and-templates/tools/process-and-data-modelling-tools/process-flow-diagrams

40

https://uwaterloo.ca/ist-project-management-office/tools-and-templates/tools/process-and-data-modelling-tools/process-flow-diagrams

4/8/24

17

https://uwaterloo.ca/ist-project-management-office/tools-and-templates/tools/process-and-data-modelling-tools/process-flow-diagrams

41

Next topics

• Boolean data
• Comparison operators
• Boolean operators
• Truth tables

• Conditional statements (if-elif-else)
• Lots of examples

42

https://uwaterloo.ca/ist-project-management-office/tools-and-templates/tools/process-and-data-modelling-tools/process-flow-diagrams

4/8/24

18

Boolean data

• True and False
• Examples

43

Operations with Boolean output

Operator Meaning
== Equal to
!= Not equal to
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to

How is == different from =?

44

4/8/24

19

Boolean operators

• not – highest precedence
• and
• or – lowest precedence

>>> 5 > 1 or 1 + 2 == 4 and not 2 <= 3
True

>>> (5 > 1 or 1 + 2 == 4) and not 2 <= 3
False

45

not: truth table

Expression Evaluates to . . .
not True False
not False True

46

4/8/24

20

and: truth table

Expression Evaluates to . . .
True and True True
True and False False
False and True False
False and False False

47

or: truth table

Expression Evaluates to . . .
True or True True
True or False True
False or True True
False or False False

48

4/8/24

21

Conditional statements (if-elif-else):
Syntax/grammar

(1) if condition:
 Block of statement(s)

(2) if condition:
 Block of statement(s)
 else:
 Block of statement(s)

(3) if condition:
 Block of statement(s)
 elif condition:
 Block of statement(s)
 …
 elif condition:
 Block of statement(s)
 else:
 Block of statement(s)

50

Iterative Statements
or Loops

51

4/8/24

22

https://uwaterloo.ca/ist-project-management-office/tools-and-templates/tools/process-and-data-modelling-tools/process-flow-diagrams

52

while loop

while condition:
 Block of statement(s)

Examples

53

https://uwaterloo.ca/ist-project-management-office/tools-and-templates/tools/process-and-data-modelling-tools/process-flow-diagrams

4/8/24

23

54

for loop

for loop_variable in sequence:
 Block of statement(s)

Examples

55

4/8/24

24

range() function

To generates a sequence:
 range([start = 0], end, [increment = 1])

Examples
• range (5) # 0, 1, 2, 3, 4
• range (0, 5) # 0, 1, 2, 3, 4
• range (0, 5, 1) # 0, 1, 2, 3, 4
• range(10, 70, 20) # 10, 30, 50

56

Modules

What is it? How to “import” one?

Examples

57

4/8/24

25

Functions
Chapter 3

58

Topics

• Basics of a functions: name, parameter vs
argument, docstring, body of function, calling a
function
• return statement
• Scopes: local vs global
• Name resolution: same name
• Call stack

59

4/8/24

26

Lists
Chapter 4

60

Topics

• Defining lists
• Heterogenous data

• Revisit len() function
• Concatenation
• Methods: append, insert, remove, pop, sort,

reverse

61

4/8/24

27

List
• Ordered sequence of values
• Each value is identified by an index
• Examples
• heart_rates = [98, 75, 80, 90]
• times = ["16:00", "16:05", "16:10",
"16:15"]

62

More examples of list
A list may contain heterogeneous data

list1 = ["I did it all", 4, "love"]

63

4/8/24

28

len(...) function

returns the length/number of elements

heart_rates = [98, 75, 80, 90]
print(len(heart_rates)) # 4

65

Indexing and slicing
v = [20, 30.5, 5.1, 10.2, 100]

• Indexing
• v[2] # 5.1
• v[-1] # 100
• v[-2] # 10.2

• Slicing (stops short of the end index)
• v[1:3] # [30.5, 5.1]
• v[0:len(v)] # [20, 30.5, 5.1, 10.2, 100]
• v[0: -2] # [20, 30.5, 5.1]
• v[:3] # [20, 30.5, 5.1]
• v[2:] # [5.1, 10.2, 100]
• v[:] # [20, 30.5, 5.1, 10.2, 100]

66

4/8/24

29

Concatenation

Join multiple lists by +

x = [10, 20]

y = [5, 30, 10]

z = x + y

print(z) # [10, 20, 5, 30, 10]

67

Modifying a list
Lists are “mutable”
 x = [5, 10, 15]
 #append an object e to x: x.append(e)
 x.append(20) # x is now [5, 10, 15, 20]
 #To insert object e at index i: x.insert(i,e)
 x.insert(1, 7) # x is now [5, 7, 10, 15,
20]

 #remove the first occurrence of an object
 x.remove(15) # x is now [5, 7, 10, 20]
 #remove and return the item at a given
 #index i: x.pop(i)
 y = x.pop(2) # x = [5, 7, 20], y = 10

Add

Delete

68

4/8/24

30

More list “methods”
• #sort a list (low to high)
x.sort() # x will be changed (in sorted
order)
• Common mistake: x = x.sort()
• Above, x = None because sort function returns

None

• #reverse a list
x.reverse() # x will be changed (reversed)
• Common mistake: x = x.reverse()

69

for loops and lists: a great match!

• Coding problem: Write a function that takes a list of heart
rates as a parameter and returns the average heart rate.

• Coding problem: Write a function that takes a list of heart
rates as a parameter and returns the maximum heart rate.

• Coding problem: Write a function min_end(nums) that
takes a list of ints nums. It figures out which of the first
and last elements in the list is the smaller and sets all
the other elements of nums to be that value. Return
the changed list nums. (Q11 in Lab 5)

70

4/8/24

31

Strings
Chapter 6

71

String
• Examples
• "Hello and welcome"
• "Bowdoin College"

• Multiline string (where did I see this before?)
print('''Dear Alice,

Eve's cat has been arrested for
catnapping, cat burglary, and
extortion.

Sincerely,
Bob''')

• Assignment statement
• college = "Bowdoin College"

72

4/8/24

32

Operations on String
• college = "Bowdoin College"
• Length of a string
• len(college) # 15

• Indexing
• college[2] # 'w'
• college[-1] # 'e'
• college[-2] # 'g'

• Slicing
• college[0:2] # 'Bo'
• college[0:len(college)]
 # 'Bowdoin College’
• college[: : 3] # 'Bdnoe'

73

in and not in operators

>>> 'Hello' in 'Hello, World'
True

>>> 'cats' not in 'cats and dogs'
False

74

4/8/24

33

Concatenation
Use the + operator to join strings

college = "Bowdoin College"

city = "Brunswick, ME"

print(college + city) #Bowdoin CollegeBrunswick, ME

print(college + " " + city) #Bowdoin College Brunswick, ME

print(college + "\n" + city)
#Bowdoin College
#Brunswick, ME

75

Whitespace characters

• " " à space
• "\n" à new line
• "\t" à tab

76

4/8/24

34

Put one string in another

>>> name = 'Al'
>>> age = 4000
>>> 'Hello, my name is ' + name + '. I am ' +
str(age) + ' years old.'
'Hello, my name is Al. I am 4000 years old.'

Alternative:
>>> name = 'Al'
>>> age = 4000
>>> 'My name is %s. I am %s years old.' % (name,
age)
'My name is Al. I am 4000 years old.'

77

Splitting a string
• Breaks up a string into parts by a separator
• “returns” a list of parts

college = "Bowdoin College"

#split by whitespace
parts_list = college.split()

print(parts_list) #['Bowdoin', 'College']

• Splitting doesn't change the original string
print(college) #Bowdoin College

78

4/8/24

35

Splitting a string (cont...)
• You can choose any separator
friends_str = "Allen, Emma, Bob, Cindy"

friends_list = friends_str.split(", ")

print(friends_list)
#['Allen', 'Emma', 'Bob', 'Cindy'] Space

79

Other string methods

• upper(), lower(), isupper(),
islower(), isalpha(), isalnum()

• Example:
college = college.upper()

80

4/8/24

36

Other string methods

>>> 'Hello, world!'.startswith('Hello')
True

>>> 'Hello, world!'.endswith('world!')
True

81

List vs. string

• Strings are "immutable"
• Cannot do:

st = "hello"
st[0] = "H"
• Can do:

st = "hello"
st = "Hello"

• These functions are only for lists, not for strings:
• append, insert, remove, pop, sort, reverse, ...

82

4/8/24

37

Taking a string as input
• x = input ("Enter your name: ")
• y = input ("How old are you? ")
• Suppose user enters 57 as his/her age
• y’s value is "57", not 57

• if you want to convert string "57" to number
57
• z = int(y)

• int(y) converts a compatible string y to int
• str(z) converts a number z to string

83

What is the difference between
"57" and 57?
• Main difference is representation
• You can apply all arithmetic operators on 57
• 57 + 2
• 57 * 2

• Arithmetic operations are meaningless for
"57"
• "57" + 2 # ERROR
• "57" * 2 #
'5757'

84

4/8/24

38

Python 3 built-in functions
https://docs.python.org/3/library/functions.html

85

Dictionaries and
structured data

86

https://docs.python.org/3/library/functions.html

4/8/24

39

What is it?

• Dictionary maps "keys" to "values"
• Keys are like indices of list, only that they don't need

to be numbers

• Keys
• Immutable objects
• strings, numbers, and "tuples" of immutable objects

• Values
• Any object

87

How to create a dictionary

• Example: map people to their home states

• Another way

88

4/8/24

40

Typical operation 1:
Given a key, find the value
• What is the home state of Alice?

• Harder question: given a value, find the
key(s)
• Class participation

Note the brackets

89

Typical operation 2:
Change the value of a key

• Alice has moved from MA to NY...

90

4/8/24

41

Typical operation 3:
in operator– presence of a key
• Check if a key is present

• Iterate over all keys

91

keys() method to get a seq. of
keys

Also, check out the values() and items() methods

92

4/8/24

42

Sorting

Sort a dictionary by keys

 names = sorted(home)

93

Sorting

94

4/8/24

43

Files
Chapter 9

95

Paths

• Directory structure in computer: tree
• Commands in terminal
• pwd
• ls
• cd path

• .. for path means parent folder, ../.. means two levels up
• Relative path: begins with the current directory
• Absolute path: begins with the “root” folder

• More here: https://www.techrepublic.com/article/16-terminal-commands-
every-user-should-know/

96

https://www.techrepublic.com/article/16-terminal-commands-every-user-should-know/
https://www.techrepublic.com/article/16-terminal-commands-every-user-should-know/

4/8/24

44

Read a file – 3 steps
1. Create a file object

• file_object = open(file_name, "rt")
• file_name is a string
• Concept of file path used here
• “rt” means read text. It’s the mode of file operation.

2. Read using the file object
• content = file_object.read()

#reads the whole content into a string called content

3. Close the file object
• file_object.close()

97

Alternative: readlines()

lines = file_object.readlines()

lines is a list of strings– each string is a line, which
may contain a trailing newline character

98

4/8/24

45

Write to a file – 3 steps
1. Create a file object
• file_object = open(file_name, "wt")
• file_name is a string
• “wt” means write text. It’s the mode of file operation.

2. Write to the file object
• file_object.write(content) #write a string to file

3. Close the file object
• file_object.close()

99

Review: string à list

• Want a list: every single line of the string
becomes an individual item of the list
• list_lines = st.split("\n")
• list_lines is the name of the list
• st is the name of the string

New line character

100

4/8/24

46

List à String

• Want a string where every item of the list
becomes an individual line of the string
• st = "\n".join(list_lines)

101

f-strings

f-strings have an f prefix before the starting quotation
mark allow variables to be placed inside braces { }
>>> name = 'Al'
>>> age = 4000
>>> f'My name is {name}. Next year I
will be {age + 1}.'
'My name is Al. Next year I will be
4001.'

102

4/8/24

47

Problem: Count the
number of words, lines,
and characters in a file
Save the stats in another file

103

Change it according to where you saved the file

104

4/8/24

48

More on text files
• Examples: textfiles.com
• Text file vs. Word document
• Different encodings for text files
• Mac, Unix, Windows
• New-line character

• Unix: always "\n"
• Mac: before 2001 (OS 9) "\r"; OS X "\n"
• Windows: "\r\n"
• Excel tab delimited file: "\r"
• Python (e.g., readlines() function) can handle all!

105

with:
better alternative for file operations
• Cleaner code
• file is closed properly even if there’s an error or

exception

• Reading
with open('input.txt', 'rt') as file:
 content = file.read()

• Writing
with open('output.txt', 'wt') as file:
 file.write('Hello world')

116

4/8/24

49

Working with
Fitbit data

Problem: Delete every line where
the heart rate is 0

117

Working with
CSV files

Ch 16

118

4/8/24

50

Working with
JSON files

Ch 16

119

Working with
APIs

Ch 16

120

4/8/24

51

Conditional
Statements
Write each piece of codes in a separate cell
in Jupyter Notebook

151

if-else

• An if block can be optionally associated with an
else block
• Python ignores the else block when the if

condition is true
• else is the fall back option

Note the indentation

152

4/8/24

52

Spice it up…
Can we take steps_done as an
input?

1. Takes a "string" as input 2. Converts that string into integer

153

Spice it even more…
Use a function

Function header

Function name Parameters
More on functions

later on ...

How to run/call this function?

Comments

Function body:
Note the
indentation

154

4/8/24

53

Calling a function

• The function give_feedback will never work
unless we call it!
• Run the following code to call this function
 give_feedback(11000)

No "def" here

Argument
(steps_done will get
the value of 11000)

155

Logical expressions

• Logical operators: a and b are bool type (that is,
replace each of a and b by either True or False)
• a and b
• a or b
• not a

• Examples
• 3 > 2 and 3 > 4
• 3 > 2 or 3 > 4
• not 3 > 4

156

4/8/24

54

if-elif-else
• if block, followed by any number of elif

blocks, followed by an optional else block
• Python will execute at most one branch

• Problem: Given the average calories burned
for 3 people, find who burned the most cal.

157

Quiz

• What will be the output?

 x = 10000
 if x >= 10000:
 print ("OK")
 elif x <= 10000:
 print ("Not OK")

158

4/8/24

55

Quiz

• What will be the output?

 x = 9000
 if x >= 10000:
 print ("OK")

159

if statements can be nested

• Modify the get_max program so that it also
detects ties
• Think about the logic first

160

4/8/24

56

Solution

161

For practice: Guttag (p. 16)• Write a program to find the largest odd number among three
given numbers (not necessarily odd) x, y, and z.

def get_largest_odd(x, y, z):
 if x%2 == 1 and y%2 == 1 and z%2 == 1:
 if x > y and x > z:
 print x
 elif y > z:
 print y
 else:
 print z
 elif x%2 == 1 and y%2 == 1:
 if x > y:
 print x
 else:
 print y
 elif y%2 == 1 and z%2 == 1:
 if y > z:
 print y
 else:
 print z

elif z%2 == 1 and x%2 == 1:
 if z > x:
 print z
 else:
 print x
 elif x%2 == 1:
 print x
 elif y%2 == 1:
 print y
 elif z%2 == 1:
 print z
 else:
 print "None is odd"

162

4/8/24

57

Data in Python

168

Data/Objects

• Scalar – 4 types
• int (example: -10000, 200, 53)
• float (example: -37.59, 28.0)
• bool (example: True, False)
• None

• Non-scalar
• String (example: “hello”, “57”)
• List (example: [2, 3, 5, 7, 11, “primes”])
• And many other ... (You can define and create your

own non-scalar objects)

169

4/8/24

58

Non-scalar data:
List

171

Fitbit data
Date Calories

Burned
Ste
ps

Dista
nce

Flo
ors

Minutes
Sedentary

Minutes
Lightly Active

Minutes
Fairly Active

Minutes
Very Active

Activity
Calories

2015-09-08 1,265 0 0 0 1,440 0 0 0 0

2015-09-09 1,265 0 0 0 1,440 0 0 0 0

2015-09-10 1,744 5,807 2.31 12 1,274 166 0 0 542

2015-09-11 2,127 9,679 3.85 6 1,096 344 0 0 1,053

2015-09-12 1,852 5,747 2.29 6 1,165 275 0 0 773

2015-09-13 1,517 2,714 1.08 6 1,310 130 0 0 332

2015-09-14 1,937 7,484 2.98 24 1,170 263 4 3 850

2015-09-15 1,866 7,801 3.1 21 1,159 281 0 0 800

2015-09-16 1,813 6,256 2.49 17 1,204 236 0 0 680

2015-09-17 1,882 8,252 3.28 12 1,191 240 4 5 786

2015-09-18 1,805 5,976 2.38 14 1,097 267 0 0 734

2015-09-19 2,035 10,190 4.05 9 1,097 324 18 1 1,043

2015-09-20 1,895 7,199 2.86 14 1,148 292 0 0 854

2015-09-21 1,797 7,309 2.91 17 1,227 213 0 0 660

2015-09-22 1,265 0 0 0 1,440 0 0 0 0

2015-09-23 1,727 5,522 2.2 12 1,230 194 3 13 594

2015-09-24 1,605 5,186 2.06 12 1,375 65 0 0 224

2015-09-25 1,929 10,309 4.1 16 1,177 244 5 14 845

2015-09-26 2,129 10,702 4.26 6 1,058 368 14 0 1,165

2015-09-27 1,797 6,419 2.55 11 1,186 254 0 0 716

2015-09-28 1,964 11,177 4.44 15 1,186 189 9 56 870

2015-09-29 1,269 42 0.02 1 1,439 1 0 0 4

2015-09-30 1,834 7,096 2.82 17 1,198 232 9 1 720

2015-10-01 1,802 8,854 3.52 22 1,252 157 13 18 664

2015-10-02 1,758 5,704 2.27 7 1,206 234 0 0 654

2015-10-03 1,728 5,909 2.35 12 1,231 209 0 0 600

2015-10-04 1,571 4,380 1.74 8 1,197 137 0 0 408

2015-10-05 784 0 0 0 893 0 0 0 0

172

4/8/24

59

Date Time HRate

173

Iterative Statements/
Loops1. while loops – skipped here

2. for loops– mostly used in Python

174

4/8/24

60

Announcements

• Assignment 3
• Due next week Thursday
• Collaboration policy

• Python Quiz 2
• Next Thursday, 11/2

175

for loop

• General form (not actual code)
• for loop_variable in sequence:

 body of for loop

• sequence
1. Built-in sequence type range
2. Any list of your own
3. Even a string!

179

4/8/24

61

range to generate sequence

• sequence is commonly specified using range with
3 parameters:
• start (optional, default is 0)
• end (must specify, actually ends before this value)
• increment (optional, default is 1)

• Examples
• range(10, 70, 20) # generates [10, 30, 50]
• range (0, 5, 1) # [0, 1, 2, 3, 4]
• range (0, 5) # [0, 1, 2, 3, 4]
• range (5) # [0, 1, 2, 3, 4]

To print the output:
print(list(range(...)))

180

for loop

• Problem: Print numbers 1, 2, …, 10, each on a
single line

def print_numbers():
 for i in range(1, 11, 1):
 print (i)

Body – multiple
lines allowed

Loop variable

Sequence

181

4/8/24

62

for loop (cont…)

• Problem: Square a positive integer by addition
only

def square(x):

ans = 0
for times in range(x):

ans = ans + x
print (ans)

Can you make it work for x <= 0 as well?

Alternatives:
range(0, x, 1)
range (0, x)

range (1, x+1, 1)
range (1, x+1)

182

for loop on lists

185

4/8/24

63

Problem:
find the average of a
list of heart rates

186

187

4/8/24

64

Loop and string

188

for loop over words in string
def show_words(st):

 for x in st.split(): # iterate over the parts/words of st

 print x # This will print the individual words of st

190

4/8/24

65

Functions
return statements
Later on: Scoping rules

191

Example
• Write a function to get (not print) the

maximum of two numbers

• The return value is lost unless caller saves it!
t = get_max (10, 20) # t holds 20
print("The max was:", t)

This is how the built-in
max(...) function is

defined!

192

4/8/24

66

Semantics of return statement
• Two types of return statement
• return someData #returns someData to the caller
• return #returns None to the caller;

#implicit in any function that does not say return
• A function terminates immediately after

executing a return statement
• The returned data is transmitted to the caller

193

return vs. print
• return sends data from callee to caller.

print just prints the data in callee, does not
transmit data.
• return immediately terminates a function;

print does not.

194

4/8/24

67

Demo: loop, function, return

195

Improved version: account for leading 0s

196

4/8/24

68

Why is return important?

• Gives a way to use previously defined functions
• Makes interactions among functions possible in a

large project

198

File operations
Read a file
Write to a file
Append to a file

200

4/8/24

69

Read a file – 3 steps
1. Create a file object
• file_object = open(file_name, “rt”)
• file_name is a string—must have the full path to

the file unless the file is in the current directory.
• “rt” means read text. It’s the mode of file

operation.

2. Read the file object
• big_str = file_object.read()

#reads the whole content into a string

3. Close the file object
• file_object.close()

201

Write to a file – 3 steps
1. Create a file object
• file_object = open(file_name, “wt”)
• file_name is a string—must have the full path to the file

unless the file is in the current directory.
• “wt” means write text. It’s the mode of file operation.

2. Write to the file object
• file_object.write(big_str) #write a string to file

3. Close the file object
• file_object.close()

202

4/8/24

70

Text files

• Resource: textfiles.com
• Differences between a text file and a Word

document
• Different encodings for text files
• Mac, Unix, Windows
• New-line character

• Unix: always "\n"
• Mac: before 2001 (OS 9) "\r"; OS X "\n"
• Windows: "\r\n"
• Excel tab delimited file: "\r"
• Python can handle all!

203

Problem: Count the
number of words,
lines, and characters in
a file
Save the info in another file

204

4/8/24

71

205

Text processing
using strings

Review len, indexing, slicing, concat.
Help:
https://docs.python.org/3/library/stdtypes.html#string-
methods

211

https://docs.python.org/3/library/stdtypes.html%23string-methods
https://docs.python.org/3/library/stdtypes.html%23string-methods

4/8/24

72

Text manipulation
• String functions/methods
• String is an “object” (non-scalar data)
• In general, for objects there are predefined

functions:

 objectName.methodName(parameters)

• Original string is never modified!
In most cases, string methods return a
modified copy of the original string.

213

String methods
• In the following methods, st is a predefined string
• resultSt = st.capitalize()
• resultSt = st.upper()
• resultSt = st.lower()
• resultSt = st.title()
• resultSt = st.swapcase()
• resultTF = st.startswith(anotherString)
• resultTF = st.endswith(anotherString)
• index = st.find(searchStr [, startIndex, endIndex])
• resultSt = st.replace(searchStr, replaceStr [,

count])
• resultTF = st.isalpha()
• resultTF = st.isdigit()
• resultList = st.split([delimiter])

Replaces all matching if
count is not given

Default delimiter:
white space

214

4/8/24

73

String à List

• Want a list: every single line of the string
becomes an individual item of the list
• list_lines = st.split("\n")
• list_lines is the name of the list
• st is the name of the string

New line character

216

List à String

• Want a string s.t. every item of the list becomes
an individual line of the string
• st = “\n”.join(list_lines)

217

4/8/24

74

Python Assignment 4
Practice Problem on
Fitbit:
Delete every line
where the heart rate
is 0
New-line character: '\n
Tab character: '\t'

219

Heart rate data file (snapshot)

9/10/15 10:00 0
9/10/15 10:05 0
9/10/15 10:10 0
9/10/15 10:15 0
9/10/15 10:20 0
9/10/15 10:25 82
9/10/15 10:30 76
9/10/15 10:35 84
9/10/15 10:40 84
9/10/15 10:45 85
9/10/15 10:50 91
9/10/15 10:55 99
9/10/15 11:00 89

220

4/8/24

75

Algorithm
• How to get the input?

• Design question: How to get the file name?
• Read the data file into a string (big_str)

• How to store/save the output?
• Use a list to incrementally store the output
• Create an empty list of desired_lines, which we’ll

populate later
• How to incrementally populate

desired_lines?
• Split the big_str into lines
• For each line do:

• Check if the line has a heart rate of 0. If not, append
the line to the list of desired_lines

• How to save the output to a file?
• Convert the desired_lines list to a string
• Write that string to a file
• Design question: Should we replace the old file or

create a new file?

9/10/15 10:00 0

9/10/15 10:05 0
9/10/15 10:10 0
9/10/15 10:15 0
9/10/15 10:20 0
9/10/15 10:25 82

9/10/15 10:30 76
9/10/15 10:35 84
9/10/15 10:40 84
9/10/15 10:45 85
9/10/15 10:50 91

9/10/15 10:55 99
9/10/15 11:00 89

221

222

4/8/24

76

Problem: Replace all
occurrence of a string
in a file by another
string
What are the steps?

223

Additional topics in
Python

Dictionary
break and continue
Modules
Scoping rules of functions

228

4/8/24

77

Data Structure
Dictionary

229

What is it?

• Dictionary maps "keys" to "values"
• Keys are like indices of list, only that they don't need

to be numbers

• Keys
• Immutable objects
• strings, numbers, and "tuples" of immutable objects

• Values
• Any object

230

4/8/24

78

How to create a dictionary

• Example: map people to their home states

• Another way

231

Typical operation 1:
Given a key, find the value
• What is the home state of Alice?

• Harder question: given a value, find the
key(s)
• Class participation

Note the brackets

232

4/8/24

79

Typical operation 2:
Change the value of a key
• Alice has moved from MA to NY...

233

Typical operation 3:
in operator– presence of a key
• Check if a key is present

• Iterate over all keys

234

4/8/24

80

keys() method to get a seq. of
keys

235

Email project

• Outline:
• Start with a dictionary like
 frequency = {"Mon":0, "Tue":0, "Wed":0,
 "Thu":0, "Fri": 0, "Sat":0,
"Sun":0}

• For each email, get the weekday
• Increase the frequency of that weekday by 1
frequency[weekday] += 1

• Find the weekday that has the highest frequency

Find the most active weekday for email exchange

236

4/8/24

81

Email project

• Similar problem: Consider a dictionary of
animal names and life spans. Sort the
names by life spans high to low.
• Built-in function:
• sorted(name of dictionary, key = sort by what?,

low to high or high to low?)

Find the top 5 most frequent domain names
à Sort a dictionary by values

237

238

4/8/24

82

break
continue
Both apply to loops only
(not to if statements)

239

break statement
• Terminates a loop immediately
• Rest of the code after the loop will be executed
• The function is not terminated (contrast:

return)

• Problem: Given a list of heart rates, check if
there’s any rate > 100 and print a "found"
message in that case

240

4/8/24

83

continue statement• Goes to the next iteration of the loop by
skipping the rest of the code inside the loop
after the continue statement
• Problem: Given a list of heart rates, print all

non-zero heart rates

241

Python "Modules"
Built-in: datetime, os, random ...
External: NLTK "package"

242

4/8/24

84

Example module: datetime

• https://docs.python.org/3/library/datetime.html
• import datetime
• d = datetime.date(2016, 9, 10)
• print(d.weekday())
• print(d)

• Other ways of importing
• from datetime import *

#In this case, you’ll say ...
d = date(2016, 9, 10)

243

Another built-in module:
random• How to use it?
• import random
• x = random.random() #random float between 0 and 1
• print(x)

• n = random.choice(list) #returns one elem from list
randomly
• print(n)

245

https://docs.python.org/3/library/datetime.html

4/8/24

85

List of useful Python modules

• Useful Python modules
• https://wiki.python.org/moin/UsefulModules

• 20 Python libraries you can’t live without
• https://pythontips.com/2013/07/30/20-python-

libraries-you-cant-live-without

• Come pre-packaged with Jupyter Notebook

253

Functions and
scoping

258

https://wiki.python.org/moin/UsefulModules
https://pythontips.com/2013/07/30/20-python-libraries-you-cant-live-without
https://pythontips.com/2013/07/30/20-python-libraries-you-cant-live-without

4/8/24

86

Scoping rules
• Life of local variables (variables defined inside

a function, including parameters)
• Birth: initialization
• Death: when function exits

• Scope: One function cannot access another
function’s local variables
• Even if the other function is called

• How to share variables among functions?
1. Parameters and return values
2. Global variables (discouraged)

259

Error example

Question: How can f() get the value of x from g()?

260

