4/8/24

DCS 1500:
Computational Methods

http://mtirfan.com/DCS-1500

Mohammad T. Irfan

Email: mirfan@bowdoin.edu

Office Hours:
Wed 3-5:30pm, Fri 10am-12pm

About mself

mailto:mirfan@bowdoin.edu
http://mtirfan.com/DCS-1500

4/8/24

.,VA
%& |

Sphere 1: Security &

Armed Forces

7 Sphere 2: Economics &

Bowdoin Effort Earns Top Award at International Computer Science Conference
Archives

July 31, 2018 by Tom Porter

Best Paper

Professor Mohammad Irfan, in the middle, receives the Best Paper Award
from AAMAS Program Chairs Gita Sukthankar (L) and Mehdi Dastani (R).

A research paper coauthored by a Bowdoin professor and one of his former students has earned the top spot at a recent computer
science conference in Sweden. The paper employs computational game theory to model and predict congressional voting patterns. It
was written by Assistant Professor of Digital and Computational Studies and Computer Science Mohammad Irfan and Tucker Gordon 17,

4/8/24

How Does Our Social Network Influence
Our Behavioral Choices?

“No man is an island” wrote the poet John Donne in 1624, meaning
whether we like it or not, we are all connected. It's an assertion that rings
truer than ever in today’s networked world, and a it’s a central theme of
the research currently being done by computer scientist Mohammad
Irfan and his colleagues.

NSF CO re sor of Digital and Computational
Resea rCh nd Computer Science (CS) Irfan
to secure around half a million
Grant ng for an exciting multiyear
< ng human interactions in

networks. The research could have implications
for many fields, he says, from public health to
energy pricing to finance to the analysis of
congressional voting patterns.

The award was made by the National Science
Foundation (NSF) and done in collaboration
with Luis E. Ortiz of the University of Michigan—
Dearborn, for a multiyear research initiative. It's
all part of a core NSF program called Information
and Intelligent Systems, says Irfan, who is the
project director (while Bowdoin is the lead
organization.)

Published April 29, 2020 by Rebecca Goldfine

Contagion Class Turns Out to Be
Prescient

Last summer, when Mohammad Irfan began planning for his new digital

and computational studies class, Contagion, he had no inkling of just
how relevant the subject matter would become.

Contagion Course
Spring 2020

Assistant Professor of Digital and Computational Studies and Computer Science Mohammad Irfan.

10

4/8/24

He was very satisfied with his teaching career.

He said something that reminded me of my own students.
He said, “The students of Collegiate School wanted to learn beyond
textbooks. And if the students are not interested in learning, then there’s
no joy in teaching.”
What a beautiful thing to say! That’s why I’'m itching to get into a class
(even during my sabbatical).

LOWER DARBY

with JAMES M. LANG Advice to faculty

"Your students want you. Great
content and a well-organized class
help. But mostly they want you ...

S I I I all No amount of sophisticated bells

and whistles can replace an

TEACHING :c\Uthentic,"present and engaged
ONLINE J instructor.

(www.insidehighered.com)

Applying Learning Scieng
in Online Classes

13

4/8/24

http://www.insidehighered.com/

4/8/24

| teach humans

intellectually challenging
courses with

care, compassion, and
emotional engagement.

14

You

Lunch?

Most days work for me
(MTW after 1:05 and RF ~12pm)

Media

1. Course website for syllabus, slides, etc.
http://mtirfan.com/DCS-1500

2. Canvas for projects and other deliverables,
except Python labs

3. Coderunner for Python labs

17

4/8/24

http://mtirfan.com/DCS-1500

4/8/24

Python programming
environment

Download and install
e Anaconda distribution

e VS Code

Small programs: Python shell (pre-installed)

Student hours

* Emily Simons: Tue & Wed 7-9pm in Mills 105
* Narmer Bazile: Thu 7-9pm in Mills 105

* My office hours: Wed 3-5:30pm in Mills 209
Fri 10am-12pm in Mills 209

23

Expressions

* Arithmetic (replace x and y by two numbers)
s X+y
L] X—y
X * y
* x/y

* Special // operator means integer division. Example: 2//3 is
Oand4//3is 1.

* X % y: remainder of the division x/y
* x ¥* y: x raised to the powery
* comparison: == (equal), !=(not eq), >, >=, <, <=

* Precedence: usual
* Logical expressions: hold for now

24

Data/objects: Nouns

* Scalar — 4 types
* int (example: -10000, 200, 53)
* float (example: -37.59, 28.0)
* bool (example: True, False)
* None

* Non-scalar
* String (example: “hello”, “57")
* List (example: [2, 3,5, 7, 11, “primes”])
* And many other ... (You can define and create your
own non-scalar objects)

25

4/8/24

string (or text)

* String concatenation _

>>> 'Alice' + ' ' + 'Bob’
'Alice Bob’

* String replication
>>> 'Alice’ * 3

'"AliceAliceAlice
26
Statements
*print (‘Welcome to Python’)
*print ("What’s your name?”)
*print (2 + 3 * 4)
ex =5 * 10
*print (x)
27

4/8/24

10

Variable

Simplistic definition: Names storage space

name = "Aljice"

age = 10

Assignment statements are usually the only way to change

the value of a variable, also the #1 source of “bugs”

28

Naming a variable

* Name must start with a letter (upper or lower
case) or _ and may contain digits after the first
symbol

* Use sensible names
* Cannot use reserved words (e.g., if, for, while)

29

4/8/24

11

Check in

* How does Python categorize all possible data?

* Does the following line change the value of age?
>>> age + 10

* How can we change the value of a variable?

30

Syntactic error

cl+2*

° II5II + 10

* Can you suggest some more syntactic errors?
31

4/8/24

12

Comments

* # Single line comment

m This is basically a multiline
"string" with no effect.

Multiple lines
of
comments

32
Computer programs
A mix of three types of statements
* Sequential
* Conditional (if)
* |terative (loop)
33

4/8/24

13

First program

This program asks for name and age

print ('What is your name?') # ask for the name
my name = input ()
print ('It is good to meet you, ' + my name)

print ('The length of your name is:')
print (len(my name))

print ('"What is your age?') # ask for the age
my age = input ()

What error(s) do you see?

How to correct?

print ("You’ll be " + (my age+l) + " next year.")

34

Some built-in functions

* print(...)

input() #returns an input string
* len(“some string”) #returns number of characters

int(“5”) #returns number 5

str(5) #returns “5” (a string)

35

4/8/24

14

4/8/24

Brief Intro: Function

Reading: Ch 3
(up to “Return Values and Return Statements”)

Flow Control

Reading: Chapter 2 of Automate the Boring Stuff

15

Flow Chart

Yes Have umbrella?

No —#»={ Wait a while. |-

No Yes

;

Go outside. [<g No

End

Yes —

39

Phone call is placed.

Is ringer turned on?

Phone rings.

Voice mail picks
up.

N

Does user pick up? Is it ring #47?

Phone callis
complete.

4/8/24

16

https://uwaterloo.ca/ist-project-management-office/tools-and-templates/tools/process-and-data-modelling-tools/process-flow-diagrams

Online Purchase

3
£
S Shoponline Placeorder Shipment Received
5
(s}
3 Order Send order to
& Complete? . warehouse
8
3
Ship productto
42 S—)
E - customer
E
3
£y
83 Refund customer
]
]
(s}

https://uwaterIoo.ca/lst—proJect—manﬂﬁement—offlce/tooIs—and—templates/tooli/process—a nd—(&ta—modelllng—tooIs/processfflow—dlaﬁrams

41

Next topics

* Boolean data
* Comparison operators

* Boolean operators
* Truth tables

* Conditional statements (if-elif-else)

* Lots of examples

42

4/8/24

17

https://uwaterloo.ca/ist-project-management-office/tools-and-templates/tools/process-and-data-modelling-tools/process-flow-diagrams

4/8/24

Boolean data

e True and False

* Examples

43
Operations with Boolean output
Operator Meaning
== Equal to
I= Not equal to
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
44

18

Boolean operators

* not — highest precedence

* and
* or — lowest precedence

>>5>1o0or 1+ 2 ==4 and not 2 <=3
True

>>> (5 >1o0r 1+ 2 ==4) and not 2 <= 3
False

45
not: truth table
Expression Evaluates to. ..
not True False
not False True

46

4/8/24

19

and: truth table

Expression Evaluates to. ..
True and True True
True and False False
False and True False
False and False False

47
Expression Evaluates to. ..
True or True True
True or False True
False or True True
False or False False
48

4/8/24

20

4/8/24

Conditional statements (if-elif-else):
Syntax/grammar

(1) if condition:
Block of statement (s)

(2) if condition:
Block of statement (s)
else:
Block of statement (s)

(3) if condition:
Block of statement (s)
elif condition:
Block of statement (s)

elif condition:

Block of statement (s)
else:

Block of statement (s)

50

lterative Statements
or Loops

21

4/8/24

Phone call is placed.

Is ringer turned on?

Voice mail picks

Phone rings. up-

N

Does user pick up? Is it ring #4?

Phone callis
complete.

https://uwaterIo0.ca/lst-proJect-manaﬁement-offlce/tooIs-and-templates/tooli/process-a nd-(Eta-modeIllng-tooIs/process-flow-dlaﬁrams

52

while loop

while condition:
Block of statement (s)

Examples

53

22

https://uwaterloo.ca/ist-project-management-office/tools-and-templates/tools/process-and-data-modelling-tools/process-flow-diagrams

print(‘Access granted. ')

False

L]

| print('Hello, Joe. What is the password? (It is a fish.)') |

54
for loop
for loop variable in sequence:
Block of statement (s)
55

4/8/24

23

range() function

To generates a sequence:

range([start = 0], end, [increment = 1])

Examples
* range (5) #0,1,2,3,4
* range (0, 5) #0,1,2,3,4
* range (0, 5, 1) #0,1,2,3,4
* range(10, 70, 20) #10, 30, 50
56
Modules
What is it? How to “import” one?
Examples
57

4/8/24

24

4/8/24

Functions

Chapter 3

Topics

* Basics of a functions: name, parameter vs
argument, docstring, body of function, calling a
function

* return statement

* Scopes: local vs global

* Name resolution: same name
* Call stack

59

25

4/8/24

Lists

Chapter 4

Topics

* Defining lists

* Heterogenous data
* Revisit len() function
* Concatenation

* Methods: append, insert, remove, pop, sort,
reverse

61

26

List
* Ordered sequence of values

* Each value is identified by an index

* Examples
* heart rates = [98, 75, 80,
* times = ["16:00", "16:05",
"16:15"]

90]
"le:10",

62
More examples of list
A list may contain heterogeneous data
listl = ["I did it all", 4, "love"]
63

4/8/24

27

4/8/24

len(...) function

returns the length/number of elements

heart rates = [98, 75, 80, 90]
print (len(heart rates)) # 4

65
Indexing and slicing
v = [20, 30.5, 5.1, 10.2, 100]
* Indexing
cv[2] # 5.1
e v[-1] # 100
s v[-2] # 10.2
* Slicing (stops short of the end index)
e v[1:3] # [30.5, 5.1]
*v[0:len(v)]# [20, 30.5, 5.1, 10.2, 100]
e v[0: -2] # [20, 30.5, 5.1]
e v[:3] # [20, 30.5, 5.1]
e vi2:] # [5.1, 10.2, 100]
e vi[:] # [20, 30.5, 5.1, 10.2, 100]
66

28

4/8/24

Concatenation

Join multiple lists by +

x = [10, 20]

Modifying a list

Lists are “mutable”

Delete

29

More list “methods”

* #sort a list (low to high)

x.sort () #x will be changed (in sorted
order)
X = x.sort ()

* Above, x = None because sort function returns
None

* H#reverse a list

x .reverse () # x will be changed (reversed)
e Common mistake: x = x.reverse ()

69

for loops and lists: a great match!

* Coding problem: Write a function that takes a list of heart
rates as a parameter and returns the average heart rate.

* Coding problem: Write a function that takes a list of heart
rates as a parameter and returns the maximum heart rate.

* Coding problem: Write a function min_end(nums) that
takes a list of ints numes. It figures out which of the first
and last elements in the list is the smaller and sets all
the other elements of nums to be that value. Return
the changed list nums. (Q11 in Lab 5)

70

4/8/24

30

Strings

Chapter 6

String

* Examples
* "Hello and welcome"
* "Bowdoin College"

* Multiline string (where did | see this before?)
print ('''Dear Alice,

Eve's cat has been arrested for
catnapping, cat burglary, and

extortion.
Sincerely,
Bob''')
* Assignment statement
* college = "Bowdoin College"

72

4/8/24

31

Operations on String

*college = "Bowdoin College"
* Length of a string
* len(college) # 15
* Indexing
* college[2] # 'w'
* college[-1] # 'e!
s college[-2] + 'qg’
* Slicing
* college[0:2] # 'Bo’
* college[0:1en(college)]
'Bowdoin College’
* college] : 31 # 'Bdnoe'
73
in and not in operators
>>> 'Hello' in 'Hello, World'
True
>>> 'cats' not in 'cats and dogs'
False
74

4/8/24

32

Concatenation
Use the + operator to join strings

college = "Bowdoin College"

city = "Brunswick, ME"

print (college + city) #Bowdoin CollegeBrunswick, ME

print (college + " " + city) #Bowdoin College Brunswick, ME

print (college + "\n" + city)
#Bowdoin College
#Brunswick, ME

75
Whitespace characters
«" "> space
*"\n" = new line
« "\t" > tab
76

4/8/24

33

Put one string in another

>>> name = 'Al'
>>> age = 4000
>>> 'Hello, my name is ' + name + '. I am ' +

str(age) + ' years old.'
'Hello, my name is Al. I am 4000 years old.'

Alternative:

>>> name = 'Al'

>>> age = 4000

>>> 'My name is %$s. I am %$s years old.' % (name,
age)

'My name is Al. I am 4000 years old.'

77

Splitting a string

* Breaks up a string into parts by a separator
* “returns” a list of parts

college = "Bowdoin College"

#split by whitespace
parts list = college.split ()

print (parts list) #['Bowdoin', 'College']

* Splitting doesn't change the original string
print (college) #Bowdoin College

78

4/8/24

34

Splitting a string (cont...)

* You can choose any separator
friends str = "Allen, Emma, Bob, Cindy"
friends list = friends str.split(", '

print (friends_ list)

#['Allen', 'Emma', 'Bob', 'Cindy']

79
Other string methods
*upper (), lower(), isupper(),
islower (), isalpha(), isalnum()
* Example:
college = college.upper ()
80

4/8/24

35

4/8/24

Other string methods

>>> 'Hello, world!'.startswith('Hello')
True

>>> 'Hello, world!'.endswith('world!")
True

81

List vs. string

* Strings are "immutable"

e Cannot do:
st = "hello"
st[0] ="H"

* Cando:

st ="hello"
st = "Hello"

* These functions are only for lists, not for strings:
* append, insert, remove, pop, sort, reverse, ...

82

36

Taking a string as input
*x = input ("Enter your name: ")
*y = input ("How old are you? ")
* Suppose user enters 57 as his/her age
* y’'svalue is "57", not 57

* if you want to convert string "57" to number
57

*z = int (y)
* int(y) converts a compatible string y to int

* str(z) converts a number z to string

83
What is the difference between
"57" and 577
* Main difference is representation
* You can apply all arithmetic operators on 57
57 + 2
¢ 57 * 2
* Arithmetic operations are meaningless for
Il57||
¢ "57M + 2 # ERROR
° "57" * 2 #
'5757"
84

4/8/24

37

4/8/24

Python 3 built-in functions
https://docs.python.org/3/library/functions.html

2. Built-in Functions

The Python interpreter has a number of functions and types built into it that are always available. They are
listed here in alphabetical order.

Built-in Functions

abs() dict() help() setattr()

all() hex() next() slice()

any() divmod() id() object() sorted()
ascii() enumerate() input() oct() staticmethod()
bin() eval() open() str()

bool() exec() isinstance() ord() sum()
bytearray() filter() issubclass() pow() super()

bytes() float() iter() tuple()
callable() format () property () type()

chr() frozenset () list() range() vars()
classmethod() getattr() locals() repr() zip()
compile() globals() map() reversed() __import_ ()
complex() hasattr() round()

delattr() hash() memoryview() set()

85

Dictionaries and
structured data

38

https://docs.python.org/3/library/functions.html

What is it?

* Dictionary maps "keys" to "values"
* Keys are like indices of list, only that they don't need
to be numbers

* Keys
* Immutable objects
* strings, numbers, and "tuples" of immutable objects

* Values
* Any object

87

How to create a dictionary

* Example: map people to their home states

home = {} #Empty dictionary
home["Cindy"]
home["Alice"] "MA" #Maps "Alice" to "MA"
home["David"] "NY"

home["Bob"] = "NY"

* Another way

print (home)

"ME" #Enters a new mapping ("Cindy" : "ME")

{'David': 'NY', 'Cindy': 'ME', 'Bob': 'NY', 'Alice': 'MA'}

home = {'David': 'NY', 'Cindy': 'ME', 'Bob': 'NY', 'Alice':

{'Alice': 'MA', 'David': 'NY', 'Bob': 'NY', 'Cindy': 'ME'}

print (home) #Ordering: random in Python 3.5, sequential in 3.6

"MA'}

88

4/8/24

39

4/8/24

Typical operation 1:

Given a key, find the value
* What is the home state of Alice?

print (home["Alice"]

MA
Note the brackets

* Harder question: given a value, find the
key(s)

* Class participation

89

Typical operation 2:
Change the value of a key

* Alice has moved from MA to NY...

home["Alice"] = "NY" #Alice's home state is changed to NY
print (home) #Verify it

{'Alice': 'NY', 'David': 'NY', 'Bob': 'NY', 'Cindy': 'ME'}

90

40

Typical operation 3:

in operator— presence of a key
* Check if a key is present

if "David" in home:

print("David -->", home["David"])
if "Estie" in home:

print("Estie -->", home["Estie"])

David --> NY

* [terate over all keys

for person in home:
print(person, "-->", home[person])

Alice --> NY
David --> NY
Bob --> NY

Cindy --> ME

91
keys() method to get a seq. of
keys
people = home.keys()
print (people)
dict_keys(['Alice', 'David', 'Bob', 'Cindy'])
Also, check out the values() and items() methods

92

4/8/24

41

4/8/24

Sorting

Sort a dictionary by keys

names = sorted (home)

93

Sorting

#Sort a dictionary by values

life span = {"dog": 8, "cat": 12, "fox": 7, "horse": 15}
names_sorted = sorted(life_span, key = life_span.get, reverse = True)
print(names_sorted)

#Print names and life spans in sorted order
for name in names_sorted:
print(name, "-->", life span[name])

['horse', 'cat', 'dog', 'fox']
horse --> 15

cat --> 12
dog --> 8
fox --> 7
94

42

Files
Chapter 9

Paths

* Directory structure in computer: tree

* Commands in terminal
* pwd
e ls
* cd path
* ..for path means parent folder, ../.. means two levels up
* Relative path: begins with the current directory
* Absolute path: begins with the “root” folder

* More here: https://www.techrepublic.com/article/16-terminal-commands-
every-user-should-know/

96

4/8/24

43

https://www.techrepublic.com/article/16-terminal-commands-every-user-should-know/
https://www.techrepublic.com/article/16-terminal-commands-every-user-should-know/

4/8/24

Read a file — 3 steps

1. Create afile object
* file_object = open(file_name, "rt")
* file_name is a string
* Concept of file path used here
* “rt” means read text. It’s the mode of file operation.

2. Read using the file object

* content = file_object.read()
#reads the whole content into a string called content

3. Close the file object
* file_object.close()

97
Alternative: readlines()
lines = file object.readlines()
lines is a list of strings— each string is a line, which
may contain a trailing newline character

98

44

Write to a file — 3 steps

1. Create a file object
* file_object = open(file_name, "wt")
* file_name is a string
* “wt” means write text. It’s the mode of file operation.

2. Write to the file object
* file_object.write(content) #write a string to file

3. Close the file object
* file_object.close()

99

Review: string =2 list

* Want a list: every single line of the string
becomes an individual item of the list

* list_lines = st.split("\n*
* list_lines is the name of the list
* stis the name of the string

100

4/8/24

45

4/8/24

List = String

* Want a string where every item of the list
becomes an individual line of the string

* st ="\n".join(list_lines)

101

f-strings

f-strings have an f prefix before the starting quotation
mark allow variables to be placed inside braces { }

>>> name = 'Al'

>>> age = 4000

>>> f£'My name is {name}. Next year I
will be {age + 1}.'

'My name is Al. Next year I will be
4001."

102

46

Problem: Count the
number of words, lines,
and characters in a file

Save the stats in another file

103

1 def file_stat(file_name):

2 """Count the number of words, lines, and characters in a text file

3 Save the info in a new file"""

4 #Read the file first

5 #1. Create file object

6 file_object = open(file_name, "rt")

7 #2. Read the file

8 content = file_object.read()

9 #3. Close the file object

10 file_object.close()

11

12 #Count the number of words

13 word_list = content.split()

14 line_list = content.split("\n")

15

16 print(f"Number of words: {len(word_list)}")

17 print(f"Number of lines: {len(line_list)}")

18 print(f"Number of characters: {len(content)}")

19

20 output = f"{len(word_list)}\n{len(line_list)}\n{len(content)}"

21 file_object = open("stat.txt", "wt")

22 file_object.write(output)

23 file_object.close()

24

25 file_stat("files/rainyday.txt") Change itaccording to where you saved the file
104

4/8/24

47

4/8/24

More on text files

* Examples: textfiles.com
* Text file vs. Word document

* Different encodings for text files

* Mac, Unix, Windows

* New-line character
e Unix: always "\n"
* Mac: before 2001 (0S 9) "\r"; OS X "\n"
¢ Windows: "\r\n"
¢ Excel tab delimited file: "\r"
* Python (e.g., readlines() function) can handle all!

105

with:
better alternative for file operations

* Cleaner code
I . ,
* file is closed properly even if there’s an error or

exception
* Reading
with open('input.txt', 'rt') as file:
content = file.read()
* Writing

with open('output.txt', 'wt') as file:
file.write('Hello world")

116

48

4/8/24

Working with
Fitbit data

Problem: Delete every line where
the heartrate is 0

Working with
CSV files

Ch 16

118

49

120

Working with
JSON files

Ch 16

Working with
APIs

Ch 16

4/8/24

50

4/8/24

Conditional
Statements

Write each piece of codes in a separate cell
in Jupyter Notebook

151

if-else

* An if block can be optionally associated with an
else block

* Python ignores the else block when the if
condition is true

steps_done = 9000
if steps_done >= 10000:
print("Bravo! You've done", steps _done, "steps!")
else:
print(u need to do more than", steps_done, "steps.")

152

51

Spice It up...
Can we take steps_done as an
input?

1. Takes a "string" as input 2. Converts that string into integer

steps_done_str = input("Enter toLd}yAmeer of steps: ")

steps_done = int(steps_done_ str)
if steps_done >= 10000:
print("Bravo! You've done", steps_done, "steps!")
else:
print("You need to do more than", steps_done, "steps.")

153

Spice it even more...
Use a function comments
More on functions

Function name Parameters later on ...

#steps_done [iis the numb of steps ‘done today
#function giwes feedback on whether to do more steps

def give_feéﬁback(steps_done): ‘<ﬁ::::::::j Function header

if steps_done >= 10000:
print ("Bravo! You've done", steps_done, "steps!")
else:
print ("You need to do more than", steps_done, "steps.")

Function body:
Note the
indentation

How to run/call this function?

154

4/8/24

52

4/8/24

Calling a function

* The function give feedback will never work
unless we call it!

* Run the following code to call this function
give_feedback(11000)

No "def" here

Argument
(steps_done will get
the value of 11000)

155

Logical expressions

* Logical operators: a and b are bool type (that is,
replace each of a and b by either True or False)
*aandb
*aorb
* nota

* Examples
*3>2and3>4
*3>20r3>4
*not3>4

156

53

if-elif-else
« if block, followed by any number of elif
blocks, followed by an optional else block

* Python will execute at most one branch

* Problem: Given the average calories burned
for 3 people, find who burned the most cal.

#x, y, z are the calories burned
#function announces who burned most cal.
def get max(x, y, z):
if x >y and x > z:
print ("First person")
elif y > z:
print ("Second person")
else:
print ("Third person")

157

Quiz

* What will be the output?

158

4/8/24

54

4/8/24

Quiz

* What will be the output?

159

if statements can be nested

* Modify the get_max program so that it also
detects ties

* Think about the logic first

160

55

4/8/24

Solution

#x, y, z are the calories burned
#function announces who burned most cal.
def get max(x, y, 2):
if x >y and x > z:
print ("First person")
elif y > z:
print ("Second person")

if y == x: #See if y is equal to x
print ("Tied with the first person")
else:
print ("Third person")

if z == x:
print ("Tied with the first person")

if z == y: #Will elif do the job here?
print ("Tied with the second person")

161

For Rractics: GUItag. (R .l e

given numbers (not necessarily odd) x, y, and z.

162

56

4/8/24

Data in Python

168

Data/Objects

* Scalar — 4 types
* int (example: -10000, 200, 53)
* float (example: -37.59, 28.0)
* bool (example: True, False)
* None

* Non-scalar
* String (example: “hello”, “57”)
* List (example: [2, 3,5, 7, 11, “primes”])
* And many other ... (You can define and create your
own non-scalar objects)

169

57

4/8/24

scalar data:

171

Fitbit data
Date Calories Ste Dista Flo Minutes Minutes Minutes Minutes Activity
Burned ps nce ors Sedentary Lightly Active Fairly Active Very Active Calories

2015-09-08 1,265 0 0 0 1,440 0 0 0 0
2015-09-09 1,265 0 0 0 1,440 0 0 0 0
2015-09-10 1,744 5,807 231 12 1274 166 0 0 542
2015-09-11 2127 9,679 385 6 1,096 344 0 0 1,053
2015-09-12 1,852 5,747 229 6 1,165 275 0 0 73
2015-09-13 1517 2,714 1.08 6 1310 130 0 0 332
2015-09-14 1,937 7,484 298 24 1,170 263 4 3 850
2015-09-15 1,866 7,801 31 21 1,159 281 0 0 800
2015-09-16 1813 6,256 249 17 1,204 236 0 0 680
2015-09-17 1,882 8,252 328 12 1,191 240 4 5 786
2015-09-18 1,805 5,976 238 14 1,097 267 0 0 734
2015-09-19 2,035 10,190 4.05 9 1,097 324 18 1 1,043
2015-09-20 1,895 7,199 286 14 1,148 292 0 0 854
2015-09-21 1,797 7,309 291 17 1,227 213 0 0 660
2015-09-22 1,265 0 0 0 1,440 0 0 0 0
2015-09-23 1,721 5,522 22 12 1,230 194 3 13 594
2015-09-24 1,605 5,186 206 12 1375 65 0 0 224
2015-09-25 1,929 10,309 4.1 16 1177 244 5 14 845
2015-09-26 2129 10702 426 6 1,08 368 14 0 1,165
2015-09-27 1,797 6,419 255 " 1,186 254 0 0 716
2015-09-28 1,964 1177 444 15 1,186 189 9 56 870
2015-09-29 1,269 42 0.02 1 1,439 1 0 0 4
2015-09-30 1,834 7,006 282 17 1,198 232 9 1 720
2015-10-01 1,802 8,854 352 2 1,252 157 13 18 664
2015-10-02 1,758 5,704 227 7 1,206 234 0 0 654
2015-10-03 1,728 5,909 235 12 1,231 209 0 0 600
2015-10-04 1,571 4,380 1.74 8 1,197 137 0 0 408
P 2 0 PR o 0 0 0 0

172

58

4/8/24

Date Time HRate
9/14/15 16:00 98
9/14/15 16:05 75
9/14/15 16:10 80
9/14/15 16:15 90
9/14/15 16:20 107
9/14/15 16:25 103
9/14/15 16:30 108
9/14/15 16:35 81
9/14/15 16:40 85
9/14/15 16:45 91
9/14/15 16:50 105
9/14/15 16:55 115
9/14/15 17:00 113
9/14/15 17:05 105
9/14/1517:10 128
9/14/1517:15 121
9/14/1517:20 129
9/14/1517:25 105
9/14/1517:30 96
9/14/1517:35 100
9/14/15 17:40 89
9/14/15 17:45 78
9/14/15 17:50 74
9/14/15 17:55 84
9/14/15 18:00 96

173

atements/

p\SniIe loops — skipped here
2. for loops— mostly used in Python

174

59

Announcements

* Assignment 3
* Due next week Thursday
* Collaboration policy

* Python Quiz 2
* Next Thursday, 11/2

175

for loop

* General form (not actual code)

e for Imsequence:
ody of for loop

¢ sequence
1. Built-in sequence type range
2. Any list of your own
3. Even a string!

179

4/8/24

60

range to generate sequence

* sequence is commonly specified using range with
3 parameters:
* start (optional, default is 0)
* end (must specify, actually ends before this value)
* increment (optional, default is 1)

* Examples
* range(10, 70, 20) # gener
* range (0,5,1) #[0,1,2,3,4]
* range (0, 5) #]0, 1,
¢ range (5) # [OI 1; r
180
for loop

* Problem: Print numbers 1, 2, ..., 10, each on a
single line

Loop variable

Sequence

Body — multiple
lines allowed

181

4/8/24

61

for loop (cont...)

* Problem: Square a positive integer
only

Alternatives:

range(0, x, 1)
range (0, x)

range (1, x+1, 1)

Can you make it work for x <= 0 as well?

182
far Inan nn lictc
#Function prints heart rate data in TWO WAYS
#Parameter: heart rates is a list of integers
def print data(heart rates):
#Print all the list elements, one in each line
print("First way:")
for i in range(len(heart rates)):
print(heart rates[i]) First way:
) 98
#Do the same in a different way 75
print("Second way:")
for x in heart rates: 80
print(x) 90
Second way:
#Call the function 98
print data([98, 75, 80, 901]) 75
80
90
185

4/8/24

62

Problem:
find the average of a
list of heart rates

186

#Function calculates the average heart rate
#Parameter: heart rates is a list of integers
def calc_avg(heart rates):
#Step 1. Calculate total
total = 0
for rate in heart rates: #rate is actual element, not index
total = total + rate #accumulate numbers

#Step 2. Divide total by the number of elements
avg = total/len(heart_rates)

print("Average is:", avg)

#Call the function
calc_avg([98, 75, 80, 90])

Average is: 85.75

187

4/8/24

63

4/8/24

Loop and string

188

for loop over words in string

def show_words(st):
for x in st.split(): # iterate over the parts/words of st

print x # This will print the individual words of st

190

64

191

Functions

return statements

Later on: Scoping rules

Example

* Write a function to get (not print) the
maximum of two numbers

#return the maximum of x and y
def get max(x, y):
if x > y:
return x
else:
return y

get_max(10, 20)
#Didn't save the returned value. It's lost.
print("The max was:", 222)

® Inereturn vaiue IS 10St uniess calier saves It!
= get max (10, 20) #tholds20

print ("The max was:", t)

192

4/8/24

65

Semantics of return statement

* Two types of return statement
* return someData #returns someData to the caller
* return #ireturns None to the caller;
#implicit in any function that does not say return
* A function terminates immediately after
executing a return statement
* The returned data is transmitted to the caller

193

return vs. print

* return sends data from callee to caller.

print just prints the data in callee, does not
transmit data.

* return immediately terminates a function;
print does not.

194

4/8/24

66

4/8/24

Demo: loop, function, return

#Parameter: k is the PIN code entered by a user
#Returns True for correct PIN, False otherwise
def validate(k):
correct_PIN = 2289
if k == correct_ PIN:
return True
else:
return False

#A "brute force" attempt at breaking a 4-digit PIN code
def break PIN():
for n in range(10000): #from 0 to 9999
if validate(n):
print("Success: PIN is", n)

break PIN()

Success: PIN is 2289

195

Improved version: account for leading Os

#Parameter: k is the PIN code entered by a user
#Returns True for correct PIN, False otherwise
def validate(test PIN):
correct PIN = [0, O, 8, 9]
if test PIN == correct PIN:
return True
else:
return False

#A "brute force" attempt at breaking a 4-digit PIN code
def break PIN():
for x in range(10000): #from 0 to 9999
digit0 = x // 1000 #integer division to get the left-most digit
rest = x % 1000 #the remaining 3 digits
digitl = rest // 100
rest = rest % 100
digit2 = rest // 10
rest = rest % 10
digit3 = rest

digit_list = [digit0, digitl, digit2, digit3]

if validate(digit_list):
print("Success: PIN is", digit_list)

break PIN()

Success: PIN is [0, 0, 8, 9]

196

67

4/8/24

Why is return important?

* Gives a way to use previously defined functions

* Makes interactions among functions possible in a
large project

198

File operations

file

200

68

2. Read the file object

3. Close the file object

Read a file — 3 steps

1. Create a file object
* file_object = open(file_name, “rt”)

* file_name is a string—must have the full path to
the file unless the file is in the current directory.

* “rt” means read text. It’s the mode of file
operation.

* big_str = file_object.read()
#reads the whole content into a string

* file_object.close()

201

2. Write to the file object

3. Close the file object

Write to a file — 3 steps

1. Create a file object
* file_object = open(file_name, “wt”)

* file_name is a string—must have the full path to the file,

unless the file is in the current directory.

* “wt” means write text. It’s the mode of file operation.

* file_object.write(big_str) #write a string to file

* file_object.close()

202

4/8/24

69

Text files

e Resource: textfiles.com

 Differences between a text file and a Word
document

* Different encodings for text files

* Mac, Unix, Windows

* New-line character
e Unix: always "\n"
* Mac: before 2001 (0S 9) "\r"; OS X "\n"
¢ Windows: "\r\n"
¢ Excel tab delimited file: "\r"
* Python can handle all!

203

204

Problem: Count the
number of words,
lines, and characters in

a file

Save the info in another file

4/8/24

70

4/8/24

#This function counts the number of lines, words, and
#characters in a given file and writes these to a new file.
#Parameter: file name is the name of file to be analyzed.
def process_ file stat(file_ name):

#Read from the file

file object = open(file_name, "rt")

big str = file object.read()

file object.close()

#Calculate
lines = big_str.split("\n")
words = big str.split()

msg = "# lines = "+ str(len(lines)) + "\n" + \
"# words = " + str(len(words)) + "\n" + \
"# characters = " + str(len(big_str))
print(msg)

#Save the info to a new file
file_object = open("info.txt", "wt")
file object.write(msg)

file object.close()

#Remember to call this function!

205

Text processing
using strings

xing, slicing, concat.

hon.org/3/library/stdtypes.html#tstring-

211

71

https://docs.python.org/3/library/stdtypes.html%23string-methods
https://docs.python.org/3/library/stdtypes.html%23string-methods

Text manipulation

* String functions/methods
* String is an “object” (non-scalar data)

* In general, for objects there are predefined
functions:

objectName.methodName(parameters)

* Original string is never modified!
In most cases, string methods return a
modified copy of the original string.

213
String methods
* In the following methods, st is a predefined string
* resultSt = st.capitalize()
* resultSt = st.upper()
* resultSt = st.lower()
* resultSt = st.title()
* resultSt = st.swapcase()
* resultTF = st.startswith(anotherString)
* resultTF = st.endswith(anotherString) fﬁﬂaf.isni'l g;j:;h‘”g it
* index = st.find(searchStr [, startindex, er
* resultSt = st.replace(searchStr, replaceStr [,
count])
* resultTF = st.isalpha() Default delimiter:
* resultTF = st.isdigit() / sz
* resultList = st.split([delimitér])
214

4/8/24

72

4/8/24

String = List

* Want a list: every single line of the strin
becomes an individuaJ—'rtem—e—

* list_lines = st.split("\n")
* list_lines is the name of the list
* st is the name of the string

216

List = String

* Want a string s.t. every item of the list becomes
an individual line of the string

* st = “\n”.join(list_lines)

217

73

4/8/24

n Assicnment 4
ce Problem on

every line
the heart rate

racter: '\n
r:"\t'

219

Heart rate data file (snapshot)

9/10/15 10:00 0
9/10/15 10:05 0
9/10/15 10:10 0
9/10/15 10:15 0
9/10/15 10:20 0
9/10/15 10:25 82
9/10/15 10:30 76
9/10/15 10:35 84
9/10/15 10:40 84
9/10/15 10:45 85
9/10/15 10:50 91
9/10/15 10:55 99
9/10/15 11:00 89

220

74

Algorithm

* How to get the input?
* Design question: How to get the file name?
* Read the data file into a string (big_str)

* How to store/save the output?

* Use a list to incrementally store the output
* Create an empty list of desired_lines, which we’ll
populate later

* How to incrementally populate
desired_lines?
* Split the big_str into lines
* For each line do:
* Check if the line has a heart rate of 0. If not, append
the line to the list of desired_lines
* How to save the output to a file?
* Convert the desired_lines list to a string
* Write that string to a file

* Design question: Should we replace the old file or
create a new file?

221

#This function takes the file name of heart rates data as a parameter.
#It's job is to delete all the lines where the heart rate is 0 and
save the modified content to a new file.
def delete_zeros(file name):
#3 steps of reading a file
file object = open(file name, "rt")
big str = file object.read()
file_object.close()

#Create an empty list to incrementally save output
desired_lines = []

#Incrementally populate desired lines
original lines = big str.split("\n")
for line in original_lines:
if not line.endswith("\t0"):
desired lines.append(line)

#Save desired lines to a file
#First, convert the list to a string
output_str = "\n".join(desired_lines)

#Now, write the string to a file

file name = "new_" + file name #prepends "new
file_object = open(file_name, "wt")

file object.write(output_str)

file object.close()

to prev file name

#Call the function
delete_zeros("heart p2_ partial 2.txt")

222

4/8/24

75

Problem: Replace all
occurrence of a string
in a file by another

string

What are the steps?

Additional topics in
Python

ntinue

of functions

228

4/8/24

76

4/8/24

Data Structure
Dictionary

229

What is it?

* Dictionary maps "keys" to "values"

* Keys are like indices of list, only that they don't need

to be numbers

* Keys

* Immutable objects

* strings, numbers, and "tuples" of immutable objects
* Values

* Any object

230

77

4/8/24

How to create a dictionary

home = {} #Empty dictionary

home["Cindy"] "ME" #Enters a new mapping ("Cindy" : "ME")
home["Alice"] "MA" #Maps "Alice" to "MA"

home["David"] "NY"

home["Bob"] = "NY"

print (home) #Ordering: random in Python 3.5, sequential in 3.6

{'David': 'NY', 'Cindy': 'ME', 'Bob': 'NY', 'Alice': 'MA'}

home = {'David': 'NY', 'Cindy': 'ME', 'Bob': 'NY', 'Alice': 'MA'}
print (home)

{'Alice': 'MA', 'David': 'NY', 'Bob': 'NY', 'Cindy': 'ME'}

231
Typical operation 1:
Given a key, find the value
* What is the home state of Alice?
print (home["Alice"])
MA
Note the brackets
» Harder question: given a value, find the
key(s)
¢ Class participation
232

78

Typical operation 2:

Change the value of a key
* Alice has moved from MA to NY...

home["Alice"] = "NY" #Alice's home state is changed to NY
print(home) #Verify it

{'Alice': 'NY', 'David': '

233

Typical operation 3:

N operator— presence of a key
* Check if a key is present

if "David" in home:

print("David -->", home["David"])
if "Estie" in home:

print("Estie -->", home["Estie"])

David --> NY

* |terate over all keys

for person in home:
print(person,

Alice --> NY
David --> NY
Bob --> NY

Cindy --> ME

"—->", home[person])

234

4/8/24

79

keys() method to get a seq. of
keys

people = home.keys()
print (people)

dict_keys(['Alice', 'David', 'Bob', 'Cindy'])

235
Email project
* Qutline:
* Start with a dictionary like
frequency = {"Mon":0, "Tue":0, "Wed":0,
"Thu":0, "Fri": 0, "Sat":0,
"Sun":0}
* For each email, get the weekday
* Increase the frequency of that weekday by 1
frequency|[weekday] += 1
* Find the weekday that has the highest frequency
236

4/8/24

80

4/8/24

Email project

* Similar problem: Consider a dictionary of
animal names and life spans. Sort the
names by life spans high to low.

* Built-in function:

* sorted(name of dictionary, key = sort by what?,
low to high or high to low?)

237

#Sort a dictionary by values

life span = {"dog": 8, "cat": 12, "fox": 7, "horse": 15}
names_sorted = sorted(life_span, key = life_span.get, reverse = True)
print(names_sorted)

#Print names and life spans in sorted order
for name in names_sorted:
print(name, "-->", life span[name])

['horse', 'cat', 'dog', 'fox']
horse --> 15

cat --> 12
dog --> 8
fox --> 7
238

81

4/8/24

break
continue

Both apply to loops only

(not to if statements)

239

break statement
* Terminates a loop immediately

* Rest of the code after the loop will be executed

* The function is not terminated (contrast:
return)

* Problem: Given a list of heart rates, check if
there’s any rate > 100 and print a "found"

R PO DAY

def check(heart rates):
for x in heart rates:
if x > 100:
print("Found:", x)
break #terminates the for loop
print("Done") #Check out: break doesn't terminate function

check([60, 70, 110, 65, 120, 80, 70, 115, 130])

Found: 110
Done

240

82

4/8/24

C ntimﬁe statemen

* Goes to the next iteration o%tthe loop by
skipping the rest of the code inside the loop
after the continue statement

* Problem: Given a list of heart rates, print all
non-zero heart rates

def print_nonzero(heart_rates):
for x in heart rates:
if x ==
#skip the rest of the loop & go to the next iteration
continue
print(x) #x must be nonzero here. Why?

print_nonzero([60, 0, 70, 0, 0, 80, 70])

60
70
80
70

241

Python "Modules”

time, os, random ...
K "package"

242

83

Example module: datetime

* https://docs.python.org/3/library/datetime.html

* import datetime
* d = datetime.date(2016, 9, 10)
* print(d.weekday())
* print(d)

* Other ways of importing

* from datetime import *
#In this case, you'll say ...
d = date(2016, 9, 10)

243

Another built-in module:

IANAOI iz

* import random
* x = random.random() #random float between 0 and 1
* print(x)

* n =random.choice(list) #returns one elem from list
randomly

* print(n)

245

4/8/24

84

https://docs.python.org/3/library/datetime.html

List of useful Python modules

* Useful Python modules
* https://wiki.python.org/moin/UsefulModules

* 20 Python libraries you can’t live without

 https://pythontips.com/2013/07/30/20-python-

libraries-you-cant-live-without

* Come pre-packaged with Jupyter Notebook

253

Functions and
scoping

258

4/8/24

85

https://wiki.python.org/moin/UsefulModules
https://pythontips.com/2013/07/30/20-python-libraries-you-cant-live-without
https://pythontips.com/2013/07/30/20-python-libraries-you-cant-live-without

Scoping rules

* Life of local variables (variables defined inside
a function, including parameters)
* Birth: initialization
* Death: when function exits

* Scope: One function cannot access another
function’s local variables
¢ Even if the other function is called

* How to share variables among functions?

1. Parameters and return values
2. Global variables (discouraged)

259

Error example

#This funciton is called by f
def g(x):
x = 100 #Is x a local var of g()~?

#f() is called from the shell

def f():
a = 10 #a is a local var of f()
g(a) #call g
print(x) #Error: what is x?

#Call the function f
£()

Question: How can f() get the value of x from g()?

260

4/8/24

86

